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Abstract

In this work, governing equations for heat conduction with finite speed of heat propagation are derived directly from

classical thermodynamics. For a one-dimensional flow of heat, the developed governing equation is linear and of

parabolic type. In a three dimensional case, the system of nonlinear equations is formulated.

Analytical solutions of the equations for one-dimensional flow of heat are obtained, and their analysis shows

characteristic features of heat propagation with finite speed, being fully consistent with classical thermodynamics.
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1. Introduction

In heat conduction, two different analytical app-

roaches have been developed. The first is based on a

parabolic type Fourier equation assuming infinite speed

of heat propagation. The second assumes finite speed of

heat propagation and uses a hyperbolic type governing

equation.

Though from molecular point of view, finite speed of

heat propagation seems to be a reasonable physical as-

sumption, for years thermodynamically consistent

Fourier equation has been successfully applied. In the

last fifty years, different versions of the hyperbolic heat

conduction equation assuming finite thermal propaga-

tion speed have been introduced [1–5]. Unfortunately,

their thermodynamic consistency in the frame of classi-

cal thermodynamics is not clearly proven despite nu-

merous attempts to obtain such a proof [6–8]. Moreover,

some solutions of hyperbolic heat conduction equations

analyzed by Taitel [9] and Haji-Sheikh et al. [10] display

heat flows from cold to hot bodies, which contradict

classical formulation of the Second Law of thermody-

namics. Such a situation motivated different authors to
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publish works revising classical thermodynamics with

the aim to justify hyperbolic heat conduction [2,11–13].

These works lead far enough from classical thermo-

dynamics, and describe hyperbolic heat conduction as a

consequence of extended new basic thermodynamic

equations.

Naturally arises a question, whether classical ther-

modynamics is principally limited in such a way that

finite speed of heat propagation contradicts its basic

laws, or a solution of the problem may be found in the

frame of classical thermodynamics. In the sequel, heat

conduction equations with finite speed of heat propa-

gation fully consistent with classical thermodynamics,

are derived, and their properties are studied. The prob-

lem is solved purely deductively, by applying the ther-

modynamic method. According to it, the governing

equations for irreversible transport phenomena are de-

rived as corollaries of the First and Second Laws of

thermodynamics, and the local thermodynamic equili-

brium principle. Such a method has been successfully

used for analyses of different transport phenomena such

as Fourier type heat conduction [14,15], viscosity, flow

of fluids in porous media, diffusion, and energy dissi-

pation associated with direct electric current [16]. In this

work, such a thermodynamic method is developed for a

case of finite speed of heat propagation in heat con-

duction.
erved.
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Nomenclature

A, B, E constant volume thermodynamic bodies

Am ¼ �4=ð2m� 1Þp Fourier series coefficient

a ¼ cs=l dimensionless time for a case of one-dimen-

sional flow of heat in finite region

Cv specific heat capacity

c thermal mediator speed

cgr group velocity

cph phase velocity

D, D1, D2 thermal mediators

Dm coefficient defined by formulae (54) and

(56)

K, Kc thermal conductivity

k wave number

l, l1, l2 distance, length

m integer

n ¼ rT=jrT j temperature gradient unit vector

Q heat flow

q heat flux vector

q, q1 heat flux in a one-dimensional flow of heat

Ram coefficient defined by formula (55)

S entropy

T temperature

Ta0 temperature amplitude at x ¼ 0

t ¼ sc2=j dimensionless time for a case of one-dimen-

sional flow of heat in semi-infinite region

U internal energy

x, y, z cartesian coordinates

Y ¼ x=l dimensionless coordinate in a case of one-

dimensional flow of heat in finite region

Greek symbols

a ¼ j=cl dimensionless thermal diffusivity

j thermal diffusivity

k ¼ xc=j dimensionless coordinate in the case of

one-dimensional flow of heat in semi-infinite

region

km ¼ ð2m� 1Þp eigenvalue

# ¼ s 
 x=c local time

q density

r ¼ #c=l dimensionless local time

s time

X ¼ 2xj=c2 dimensionless frequency

x cyclic frequency

n ¼ q=cqCvT0 dimensionless heat flux

W ¼ T=T0 dimensionless temperature

Subscripts

A, B, E relates to thermodynamic bodies

D, D1, D2, DA, DB, D1A, D1E, D2B, D2E relates to

thermal mediators

m integer

n vector component along n

0 denotes reference values of characteristic

parameters
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2. Basic thermodynamic models of heat conduction

Two basic thermodynamic models of heat conduc-

tion may be introduced (Fig. 1). The first of them shown

on Fig. 1a, assumes direct thermal contact of bodies.

The second model presented in Fig. 1b, applies a ther-

mal mediator concept.

2.1. Thermodynamic analysis of the thermal contact

model

The thermodynamic method applied to the thermal

contact model (Fig. 1a), revealed that, in this case,

thermal propagation speed is infinite, and Fourier

equation holds [15,16]. These conclusions are based on

the following considerations. Let TAðsÞ;UAðsÞ and SAðsÞ
be the body�s A temperature, internal energy, and en-

tropy, respectively, while TBðsÞ, UBðsÞ, SBðsÞ are respec-

tive values of the same parameters for the body B, which
is in thermal contact with the body A (s is time). It is

assumed that every body has uniform temperature and

constant volume. For an insulated thermodynamic sys-

tem consisting of the bodies A and B, the First and

Second Laws formulations are
dUA

ds
þ dUB

ds
¼ 0 ð1Þ

dSA
ds

þ dSB
ds

P 0 ð2Þ

After introducing heat flows QAðsÞ ¼ dUA=ds and

QBðsÞ ¼ dUB=ds for the corresponding bodies, Eq. (1)

may be rewritten as

QAðsÞ ¼ �QBðsÞ ð3Þ

As dSA=ds ¼ QAðsÞ=TAðsÞ and dSB=dt ¼ �QAðtÞ=TBðsÞ,
inequality (2) is transformed into

QBðsÞ½TAðsÞ � TBðsÞ�P 0 ð4Þ

Expressions (3) and (4) define basic thermodynamic

properties of any heat transfer process in the thermal

contact model. Formula (3) proves that heat is instan-

taneously extracted from one body and supplied to an-

other body. This means that in the thermal contact

model does not exist any time lag between heat supply

and heat extraction. Therefore the first basic property of

any heat transfer process in the thermal contact model is

infinite speed of heat propagation.



Fig. 1. Basic thermodynamic models of heat conduction: the thermal contact model (a), the model applying the thermal mediator

concept (b).
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Expression (4) represents the second basic property

of heat conduction. Sufficient condition of this in-

equality validity is

QBðsÞ ¼ H ½TAðsÞ � TBðsÞ� ð5Þ

where H is a positive coefficient. Formula (5) shows that

instantaneous heat flow in the analyzed process is af-

fected by subsystems instantaneous temperatures differ-

ence corresponding to the same moment of time to

which heat flow relates. Thus, it is proven that in the

heat contact model no time lag exists between heat flow

and temperature.

For an isotropic heat conductive continuum with

constant heat conductivity and constant volume, Fou-

rier law

q ¼ �KrT ð6Þ

and Fourier equation

oT
os

¼ jr2T ð7Þ

are formulated by using only thermodynamic inequality

(4), energy conservation equation

qCv
oT
os

þr � q ¼ 0 ð8Þ

and local thermodynamic equilibrium principle [15,16].

In expressions (6) and (7), q is heat flux vector; q and Cv

are the continuum density and specific heat capacity,

respectively; K and j denote the continuum heat con-

ductivity and heat diffusivity, respectively. Therefore it

may be concluded that, for the thermal contact model,
infinite speed of heat propagation, Fourier law and

Fourier equation are direct corollaries of the First and

the Second laws of thermodynamics, and local thermo-

dynamic equilibrium principle.

2.2. Thermodynamic analysis of the model applying the

thermal mediator concept

In the model applying the thermal mediator concept

(Fig. 1b), A and B are constant volume thermodynamic

bodies, which have uniform temperatures and are not in

direct thermal contact, D is a thermal mediator. It is

assumed that the thermal mediator is a physical object

with the following properties:

1. The thermal mediator can be characterized by ther-

modynamic parameters: temperature TD, internal en-
ergy UD and entropy SD.

2. It can move between bodies A and B with speed c.
3. The thermal mediator temperature satisfies condi-

tions: TA > TD > TB, or TA < TD < TB depending on

the relation between temperatures TA and TB.
4. The thermal mediator participates in a three stage cy-

clic process: (a) it comes in thermal contact with one

body; (b) then it moves to another body being adia-

batically insulated; (c) it comes in thermal contact

with another body reaching initial thermodynamic

state which the thermal mediator had before the stage

‘‘a’’. As a result, a nondirect heat transfer between

two bodies occurs with a time shift determined by

the thermal mediator speed and the distance between

the bodies.



Fig. 2. Three body thermodynamic model of heat conduction

applying the thermal mediator concept (A;B;E are bodies bet-

ween whom heat transfer occurs; D1, D2 are the thermal me-

diators).

3856 I. Shnaid / International Journal of Heat and Mass Transfer 46 (2003) 3853–3863
According to formulated properties of thermal me-

diators, in the thermodynamic system consisting of

subsystems A, B and D, the following process occurs:

1. At the moment of time s thermal mediator D is in

thermal contact with the body A, and infinitesimal

heat transfer process lasting ds, takes place. For it,

the First and Second Laws equations are

dUA þ dUDA ¼ 0 ð9Þ

dUA

TAðsÞ
þ dUDA

TD
P 0 ð10Þ

where dUDA is a differential increment of the thermal

mediator internal energy.

2. The thermal mediator moves to the body B, this

movement lasts Ds ¼ l=c, where l > 0 is the distance.

At this stage, the thermal mediator is adiabatically

insulated: dUD ¼ 0, dSD ¼ 0.

3. At the moment of time s þ Ds ¼ s þ l=c, the thermal

mediator D comes in thermal contact with the body

B, and infinitesimal heat transfer process lasting ds,
occurs. At the end of this stage, the thermal mediator

reaches its initial state which it had before the first

stage of the process. The First and the Second laws

equations for the third stage are

dUB þ dUDB ¼ 0 ð11Þ

dUB

TBðs þ l=cÞ þ
dUDB

TD
P 0 ð12Þ

where dUDB is a differential increment of the thermal

mediator internal energy, and the following thermo-

dynamic cycling condition holds

dUDA þ dUDB ¼ 0 ð13Þ

After summarizing Eqs. (9) and (11) and taking into

account formula (13), the final First Law expression is

obtained

QAðsÞ ¼ �QBðs þ l=cÞ ð14Þ

where QA ¼ dUa=ds and QB ¼ dUB=ds are heat flows.

From expression (14) follows that in the analyzed

model heat propagates with speed c.
By summarizing Eqs. (10) and (12) and using relation

(13) it is found that

QBðs þ l=cÞ½TAðsÞ � TBðs þ l=cÞ�P 0 ð15Þ

QAðsÞ½TBðs þ l=cÞ � TAðsÞ�P 0 ð16Þ

Sufficient conditions of these inequalities validity are

QBðs þ l=cÞ ¼ Hc½TAðsÞ � TBðs þ l=cÞ� ð17Þ

QAðsÞ ¼ Hc½TBðs þ l=cÞ � TAðsÞ� ð18Þ
where Hc is a positive coefficient. It is obvious that ex-

pression (15) is equivalent to (16), and formula (17) is

equivalent to (18).

These formulae show that in the analyzed model heat

flow is affected by the temperature difference where the

temperatures are taken with a time delay corresponding

to the finite speed of heat propagation, and in this case

the heat, as usually, always flows from the hot body to

the cold body. Expressions (15)–(18) reflect fundamental

temperatures difference-heat flow relations. They are

corollaries of the First and Second laws of thermo-

dynamics obtained in a purely deductive way.

Fig. 2 presents a more complex model of heat con-

duction than shown in Fig. 1, involving three constant

volume bodies A, B, E and two thermal mediators D1,

D2. The bodies A;B;E have respective temperatures TA,
TB, TE and internal energies UA, UB, UE. Thermal medi-

ators D1;D2 have respective temperatures TD1
, TD2

and
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internal energies UD1
, UD2

. The thermal mediator�s
temperatures satisfy the following conditions: TA >
TD1

> TE, or TA < TD1
< TE; TE > TD2

> TB, or TE <
TD2

< TB depending on direction of heat flows. In the

three body model, a five stage process takes place:

1. At the moment of time s thermal mediator D1 is in

thermal contact with the body A, and infinitesimal

heat transfer process with duration ds occurs

dUA þ dUD1A ¼ 0 ð19Þ

where dUD1A is a differential increment of thermal

mediator internal energy.

2. The thermal mediator D1 moves to the body E during

time interval ðDsÞ1 ¼ l1=c, where l1 > 0 is the dis-

tance. At this stage, thermal mediator is adiabatically

insulated: dUD1
¼ 0.

3. At the moment of time s þ Ds1 ¼ s þ l1=c thermal

mediator D1 comes in thermal contact with the body

E. Instantaneously thermal mediator D2 is also in

thermal contact with E, and infinitesimal heat trans-

fer process lasting ds originates. At the end of this

stage, the thermal mediator D1 reaches its initial state

which it had before the first stage of the process. For

the third stage, the First law equation is

dUE þ dUD1E þ dUD2E ¼ 0 ð20Þ

where dUD1E, dUD2E are differential increments of the

thermal mediators internal energy. The thermody-

namic cycling condition requires

dUD1A þ dUD1E ¼ 0 ð21Þ

4. The thermal mediator D2 moves to the body B during

time interval Ds2 ¼ l2=c, where l2 > 0 is the distance.

At this stage, thermal mediator is adiabatically insu-

lated: dUD2
¼ 0.

5. At the moment of time s þ Ds1 þ Ds2 ¼ s þ ðl=cÞ,
where l ¼ l1 þ l2, thermal mediator D2 comes in ther-

mal contact with the body B, and infinitesimal heat

transfer process lasting ds takes place. At the end

of this stage, the thermal mediator D2 reaches its ini-

tial state which it had before the third stage of the

process. Therefore it is

dUB þ dUD2B ¼ 0 ð22Þ

dUD2E þ dUD2B ¼ 0 ð23Þ

where dUD2B is differential increment of the thermal

mediator internal energy.

As a result of summarizing Eqs. (19), (20), (22) and

taking into account formulae (21), (23), the following

energy balance equation holds for a case when a body E
thermally interacts with two other bodies A and B
QAðsÞ þ QBðs þ l=cÞ þ dUE

ds

����
sþl1=c

¼ 0 ð24Þ

3. Kinetic and governing equations for heat conduction

with finite speed of heat propagation

In this section results of the thermodynamic analyses

which led to final Eqs. (15)–(18) and (24), are applied to

an isotropic heat conductive continuum. It is assumed

that the local thermodynamic equilibrium principle is

applicable, and the continuum has constant volume.

3.1. Equations for one-dimensional flow of heat

As the first step, one-dimensional flow of heat is

analyzed. As in the book of Carslaw and Jaeger [17], it is

assumed that isothermal surfaces are planes perpendi-

cular to x axis. It is also suggested that the direction of

thermal mediators velocity coincides with direction of x
axis. Let isothermal planes TBðxþ l; sÞ and TAðx; sÞ rep-
resent bodies A and B, and an arbitrary cylindric volume

between these planes is the body E. It is also suggested

that the distance between these planes is infinitesimal

l ¼ dx. After simple calculations, formulae (16) and (24)

may be replaced by

�qðx; sÞ oT
ox

�
þ 1

c
oT
os

�
P 0 ð25Þ

qCv
oT
os

þ oq
ox

þ 1

c
oq
os

¼ 0 ð26Þ

where qðx; sÞ, q, Cv are heat flux, density and specific

heat capacity, respectively.

Inequality (25) is equivalent to the condition

qðx; sÞ ¼ �Kc

oT
ox

�
þ 1

c
oT
os

�
ð27Þ

where Kc is a positive coefficient, which easily may be

identified as the thermal conductivity of the continuum

Kc ¼ K.
If a coordinate system x1 ¼ �x is applied, and ther-

mal mediators direction of motion is left unchanged,

Eqs. (26) and (27) are transformed into

qCv
oT
os

þ oq1
ox1

� 1

c
oq1
os

¼ 0 ð28Þ

q1ðx1; sÞ ¼ �K
oT
ox1

�
� 1

c
oT
os

�
ð29Þ

This means that in the general case of one dimensional

continuum, the propagation of thermal perturbation is

governed by the following system of partial derivative

equations, where the first of them is a kinetic equation––

a corollary of the Fist and Second Laws, and the second

is a corollary of the First Law
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qðx; sÞ ¼ �K
oT
ox

�
� 1

c
oT
os

�
ð30Þ

qCv
oT
os

þ oq
ox

� 1

c
oq
os

¼ 0 ð31Þ

These formulae prove that heat propagates with finite

speed c, while sign ‘‘+’’ relates to a case when heat

propagates in direction of x axis, and sign ‘‘)’’ is applied
to a case when heat propagates in opposite direction.

The derivatives oq=ox and oq=os may be determined

from Eq. (30) and substituted in Eq. (31), thus yielding

the following governing equation for one-dimensional

flow of heat in a case of constant thermal conductivity of

the continuum

1

j
oT
os

� 1

c
1

c
o2T
os2

�
� 2

o2T
osox

�
� o2T

ox2
¼ 0 ð32Þ

where j ¼ K=qCv is thermal diffusivity.

3.2. Irreversibility of heat conduction and direction of

thermal perturbations propagation

Eqs. (30)–(32) are purely phenomenological and de-

scribe the heat conduction from macroscopic, thermo-

dynamic point of view. They do not depend on physical

nature of thermal mediators. The speed c is the only

thermal mediators� property which is present in the

equations and is essential for heat conduction process.

Therefore these equations are applicable to any heat

conducting physical continuum––gaseous, liquid or so-

lid. In every case physical nature of heat mediators is

different. For instance, in crystal structures, phonon gas

particles serve as heat mediators, while in a gaseous

substances molecules of gas propagate thermal pertur-

bations. In all cases, the velocity of heat propagation c is
close to the speed of sound in the continuum, as it was

assumed by Morse and Feshbach for gases [5]. More

detailed picture of the thermal mediator concept may be

developed by statistical methods.

Eqs. (30)–(32) are different depending on direction in

which heat propagates. Therefore at any point instan-

taneously may exist only one thermal wave moving in

certain direction. The governing equations reject inter-

ference and reflection of thermal waves. This feature is a

consequence of irreversibility of heat conduction which

absolutely excludes any possibility of reversing the

process. Particularly it means that a thermal wave can-

not reflect from the boundary and interfere with the

wave moving to the boundary, thus generating temper-

atures higher than the highest temperature of interacting

bodies or lower than the lowest temperature of inter-

acting bodies. Because of this, the whole domain where

heat conduction occurs, is divided on separate sub-do-

mains. In every such sub-domain the direction of heat

propagation does not change. These sub-domains are
determined by initial and boundary conditions. The

governing principles of localizing the sub-domains are:

Case 1. A heat conductive semi-infinite domain in thermal
equilibrium. Thermal perturbation on its boundary. In this

case, thermal perturbation wave propagates from the

boundary into the domain.

Case 2. A bounded heat conductive space domain in
thermal equilibrium. Thermal perturbations on its bound-
aries. The thermal perturbation waves propagate from

the boundaries into the domain until they meet inside

the domain. The surfaces where the waves meet, divide

the domain on sub-domains.

Case 3. A nonuniform temperature field in the space do-
main. In this case, the space sub-domains, where direc-

tion of heat propagation does not change, already exist

initially. Their borders are formed at a starting moment,

when thermal equilibrium exists in the domain, and

thermal perturbations are introduced at the borders of

the domain or inside domain.
3.3. Equations for three dimensional isotropic continuum

In a three dimensional case of an isotropic contin-

uum, the only physically preferable direction is the di-

rection of the temperature gradient vector rT , and the

condition q n ¼ 0 holds, where n ¼ rT=jrT j denotes
the temperature gradient unit vector, q is the heat flux

vector, and sign j j denotes vector magnitude. For the n-

direction, equations similar to (30) and (31) may be lo-

cally applied

qnðx; y; z; sÞ ¼ �K
oT
on

�
� 1

c
oT
os

�
ð33Þ

qCv
oT
os

þ oqn
on

� 1

c
oqn
os

¼ 0 ð34Þ

where sign ‘‘+’’ relates to a case when the heat pertur-

bation propagates in n direction, and sign ‘‘)’’ charac-
terizes the case when the heat perturbation propagates in

the opposite direction; x, y, z are cartesian coordinates of

a point in the continuum; qnðx; y; z; sÞ is a component of

heat flux vector qðx; y; z; sÞ along n.

As oT=on ¼ jrT j, q ¼ qnn, and oqn=on ¼ r � q, from
expressions (33) and (34) follows that

qnðx; y; z; sÞ ¼ �K jrT j
�

� 1

c
oT
os

�
ð35Þ

q ¼ �KrT 1

�
� 1

cjrT j
oT
os

�
ð36Þ

qCv
oT
os

þr � q� 1

c
oqn
os

¼ 0 ð37Þ
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Nonlinear partial differential equations (35)–(37) des-

cribe heat conduction in three dimensional isotropic

continuum with finite speed of heat perturbations

propagation. Their nonlinearity is a very essential ob-

stacle for obtaining analytical solutions.
4. Basic properties of derived equations for one-dimen-

sional flow of heat

4.1. The governing equation type and finite speed of heat

propagation

Eq. (32) which governs one-dimensional flow of heat

with finite speed of thermal perturbations propagation,

is a particular case of the general two-dimensional par-

tial differential equation [5]

Aðx; sÞ o
2U
ox2

þ 2Bðx; sÞ o
2U

oxos
þ Dðx; sÞ o

2U
os2

¼ E x; s;U ;
oU
ox

;
oU
os

� �
ð38Þ

For Eq. (32) Aðx; sÞ ¼ �1, Bðx; sÞ ¼ 
1=c, Dðx; sÞ ¼
�1=c2, and B2ðx; sÞ � Aðx; sÞDðx; sÞ ¼ 0. It means that

equation (32) is of parabolic type. Because of this, for-

mulae (30)–(32) may be simplified by introducing a new

independent variable # ¼ s 
 x=c instead of s. In for-

mula for #, the sign ‘‘)’’ relates to a case when thermal

perturbation propagates in x direction, while the sign

‘‘+’’ means that thermal perturbation propagates in the

opposite direction. After such a substitution of # in

expressions (30)–(32), the following equations deter-

mining qðx; #Þ and T ðx; #Þ, are obtained:

qðx; #Þ ¼ �K
oT
ox

ð39Þ

qCv
oT
o#

þ oq
ox

¼ 0 ð40Þ

oT
o#

¼ j
o2T
ox2

ð41Þ

Obviously Eq. (39) is similar to the regular Fourier

law equation (6); Eq. (40) is similar to regular energy

balance equation (8); and (41) is similar to Fourier

governing equation (7). But there is also a principal

difference. In regular heat conduction equations time s
and space coordinate x are independent variables, while

in the analyzed case, # ¼ s 
 x=c and x are independent

variables. Because of this, governing equation (41) pre-

dicts quite different from Fourier equation solutions

describing irreversible heat conduction with finite speed

of heat propagation.

Solutions of the regular Fourier equation (7) predict

that any thermal perturbation introduced at a time

moment s ¼ s0 in a point x ¼ x0 instantaneously, at the

same moment of time s ¼ s0 affects all space domain.
In the derived governing parabolic equation (41), a

new independent variable # ¼ s 
 x=c, instead of time s,
determines its solutions. Therefore any thermal pertur-

bation introduced at the time moment s ¼ s0 and in the

point x ¼ x0 corresponds to a value of the independent

variable #0 ¼ s0 
 x0=c. At the same value of the inde-

pendent variable #0 ¼ s 
 x=c, the thermal perturbation

affects all space domain, because governing equation

(41) is of parabolic type. Therefore the following for-

mula holds

#0 ¼ s 
 x=c ¼ s0 
 x0=c ð42Þ

It means that

s � s0 ¼ jx� x0j=c ð43Þ

where symbol j j denotes absolute value.

Formula (43) shows that the thermal perturbation

with a time delay reaches different points of the con-

tinuum. This time delay is determined by the distance

jx� x0j and value of c. Thus it is proven that c is speed of

thermal perturbation propagation, and derived para-

bolic governing equation describes heat conduction with

finite speed of heat propagation.

In order to reach a clearer understanding of prop-

erties of Eq. (41), the following conditions are assumed:

1. The continuum is semi-infinite; it is bounded by a

plane at x ¼ 0, and the points of the continuum have

positive x.
2. Initial temperature, corresponding to #6 0, is zero.

3. At x ¼ 0 a thermal perturbation T ð0; #Þ ð#P 0Þ is in-
troduced. It means, that thermal perturbations prop-

agate in x direction, therefore it is # ¼ s � x=c.

Let the function T0ðx; #Þ be respective solution of Eq.

(41) valid for # > 0. For an arbitrary moment of time

s0 P 0, exists such an isothermal plane with a coordinate

x0 ¼ cs0 where # ¼ s0 � x0=c ¼ 0. At the same moment

of time s ¼ s0, for x < x0, there is # ¼ �ððx� x0Þ=cÞ > 0,

and the temperature is determined by the thermal per-

turbation, i.e. by the function T0ðx; #Þ. For the same time

moment s ¼ s0 and xP x0, there is # ¼ �ððx� x0Þ=
cÞ6 0, and the points of the continuum have initial zero

temperature. The boundary between the region of con-

tinuum affected by thermal perturbation, and the region

with zero initial temperature moves with the speed c. At

the beginning of the process, there is s0 ¼ 0, x0 ¼ 0, and

continuum is not affected by thermal perturbation. Thus

the derived parabolic governing equation (41) describes

heat conduction with finite speed of heat propagation c.
In the analyzed case, physical meaning of # ¼ s � x=c
becomes clear: it is the local time at a given point

counted from a moment, when thermal perturbation

arrives at this point. When x=cs � 1, # � s, and Fourier

equation holds.
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Fig. 3 further illustrates one-dimensional flow of heat

in a semi-infinite region with xP 0, T ðx; 0Þ ¼ 0,

T ð0; #Þ ¼ T0 ¼ const. In this case, the heat perturbation

propagates in x direction. Dimensionless quantities: time

t ¼ sc2=j, coordinate k ¼ xc=j, temperature W ¼ T=T0,
and heat flux n ¼ q=cqCvT0, are introduced. It follows

from Eqs. (39) and (41), that for k < t dimensionless

temperature and heat flux are determined as

W ¼ erfc
k

2
ffiffiffiffiffiffiffiffiffiffi
t � k

p
� �

ð44Þ

n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðt � kÞ

p exp

�
� k2

4ðt � kÞ

�
ð45Þ

while for k P t there are W ¼ 0, n ¼ 0. For comparison,

the same variables determined from Fourier equation

are shown in Fig. 3, thus confirming that the derived

equations define wave propagation of thermal pertur-

bations.

4.2. Irreversibility of heat conduction with finite speed of

heat propagation

Parabolic character of the governing equation (41)

reflects absolute irreversibility of heat conduction––a

feature which is common with Fourier equation (7). This

leads to the following peculiarities of its solutions which

are similar to Fourier equation [5]:

1. The solutions derived for positive and negative times

are principally different.

2. All irregularities in the solution of the Eq. (41) are

smoothing with time. Therefore during heat propaga-

tion, a sharp temperature front in heat conductive
Fig. 3. Temperature and heat flux profiles for t ¼ 1:8
continuum is physically impossible. Only artificially

at initial conditions it can be introduced.

3. In a bounded closed continuum, the highest and the

lowest values of temperature are reached either on

boundaries of the continuum or at initial conditions.

This theorem is valid only for a parabolic equation of

the type (41) without the heat source term, and does

not hold for hyperbolic type governing equation.

This means that Eq. (41) is consistent with the Sec-

ond Law of thermodynamics and reflects irreversibil-

ity of heat transfer process according to which heat

always flows from hot to cold bodies. The principle

of maximal and minimal values is not valid for hyper-

bolic governing equation. Because of this, hyperbolic

heat conduction equation has nonphysical solutions

where heat flows from cold to hot bodies.

4.3. Periodical solutions of the derived governing equation

Additional information about properties of govern-

ing equation (41) brings analysis of a case when a peri-

odical temperature perturbation is introduced at the

border of semi-infinite domain. It is assumed that xP 0,

T ðx; 0Þ ¼ 0, T ð0; #Þ ¼ Ta0 sinðx#Þ. Appropriate periodi-

cal solution of Eq. (41) expressed in variables x and s, is

T ðx; sÞ ¼ Ta0 exp
�
� x

2j

� 	1=2

x
�

 sin xs

�
� x

c

�
þ x

2j

� 	1=2
�
x
�

ð46Þ

This is an equation of a sinusoidal temperature wave

traveling in x direction. In this wave, amplitude of

temperature oscillations monotonically decreases. The
defined by the derived and Fourier equations.



Fig. 4. The wave dimensionless phase cph=c and group cgr ve-
locities as functions of X ¼ 2xj=c2, determined from derived

heat conduction governing equation.
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wave number k, phase velocity cph, and group velocity

cgr are defined as

k ¼ x
c
þ x

2j

� 	1=2

ð47Þ

cph ¼
x
k
¼ 1

c

�
þ 1ffiffiffiffiffiffiffiffiffi

2xj
p

��1

ð48Þ

cgr ¼
dx
dk

¼ 1

c

�
þ 1

2
ffiffiffiffiffiffiffiffiffi
2xj

p
��1

ð49Þ

Formulae (48) and (49) prove that the wave is of dis-

persion type, and its phase and group velocities are fi-

nite, being always smaller than c: cph < cgr < c. Fig. 4
illustrates how dimensionless phase and group velocities

depend on dimensionless frequency X ¼ 2xj=c2.
Therefore it may be concluded that derived equations

describe irreversible heat conduction phenomenon with

finite speed of heat propagation.
5. Comparison of solutions of the derived governing

equation, Fourier equation and Hyperbolic equation

Comparison of temperature distributions predicted

by the derived governing equation (41), Fourier equa-

tion (7) and hyperbolic Cattaneo equation

1

c2
o2T
os2

þ 1

j
oT
os

� o2T
ox2

¼ 0 ð50Þ

brings additional information regarding heat conduction

with finite speed of thermal perturbations propagation.

The temperature distributions are calculated for one-di-

mensional flow of heat in one dimensional continuum

bounded by two parallel planes at x ¼ 0 and x ¼ l, the
initial condition T ðx; 0Þ ¼ 0 and symmetrical boundary

conditions T ð0; sÞ ¼ T ðl; sÞ ¼ 1. For the Cattaneo

equation, additional initial condition oT
os

��
s¼0

¼ 0 is ap-
plied. Dimensionless variables a ¼ cs=l and Y ¼ x=l are
introduced. The solutions are obtained by separation of

variables.

In the case of derived parabolic governing equation

(41), two thermal perturbations waves proceed. One is

moving from the boundary Y ¼ 0 in Y direction, another

is propagating from the boundary Y ¼ 1 in opposite

direction. Accordingly two sub-domains exist. One

sub-domain occupies a region with 06 Y < 0:5, another
sub-domain is located at 0:5 < Y 6 1. For the first sub-

domain, solution of the governing equation (41) is

T ¼ 1þ
X1
m¼1

Am sinðkmY Þ expð�k2
marÞ ð51Þ

where km ¼ ð2m� 1Þp is eigenvalue; Am ¼ �4=ð2m� 1Þp
denotes Fourier coefficient; a ¼ cs=l and r ¼ a� Y are

dimensionless time and local time, respectively; a ¼ j=cl
denotes dimensionless thermal diffusivity. If a6 0:5,
formula (51) is applicable only for Y 6 a, while for

Y > a; T ¼ 0. If a > 0:5, expression (51) determines

temperature field for all values of Y < 0:5.
For the second sub-domain, Y must be replaced by

1� Y in formula (51). In this case, if a6 0:5, formula

(51) is valid for 1� Y 6 a, while for 1� Y > a, T ¼ 0.

When a > 0:5, expression (51) is applicable for all values

of 0:5 < Y 6 1.

For Fourier equation, the solution of the problem is

[17]:

T ¼ 1þ
X1
n¼1

Am sinðkmY Þ expð�k2
maaÞ ð52Þ

For Cattaneo equation, various forms of the solution

are published [6,9]. Another form of the solution may be

presented as

T ¼ 1þ exp
�
� a
2a

	X1
n¼1

AmDm sinðkmY Þ ð53Þ

where the coefficient Dm is defined as:

(a) For 1� 4k2
ma2 > 0

Dm ¼ 1

1� Ram
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4k2

ma2

q
2a

a

0
@

1
A

2
4

� Ram exp

0
@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4k2

ma2

q
2a

a

1
A
3
5 ð54Þ

Ram ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4k2

ma2

q

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4k2

ma2

q ð55Þ

(b) For 1� 4k2
ma2 < 0

Dm ¼ cosðKmaÞ þ
1

2aKm
sinðKmaÞ ð56Þ



Fig. 6. Transient temperature distributions determined from

the derived governing equation (‘‘Parabolic wave’’), Fourier

equation and hyperbolic Cattaneo equation for a ¼ 0:3, a ¼ 1.
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Km ¼ 1

2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2

ma2 � 1

q
ð57Þ

Fig. 5 presents transient temperature distributions

obtained by using derived formulae. They are symmet-

rical with respect to the line Y ¼ 0:5. Though the

‘‘Parabolic wave’’ and ‘‘Hyperbolic’’ curves display

wave propagation of thermal perturbations, their be-

havior is quite different. The first one is smooth, while

the second curve has a sharp front.

Further development of the temperature fields is

shown in Fig. 6. As in the Fig. 5, temperature distribu-

tion curves are symmetrical with respect to the line

Y ¼ 0:5. ‘‘Parabolic wave’’ curve continues to be smooth

at all values of Y 6¼ 0, and has a nonzero derivative at

Y ¼ 0:5, because there is a zero heat flux

qðx; sÞ ¼ �K
oT
ox

�
� 1

c
oT
os

�
¼ 0 ð58Þ

At this point, oT=os > 0, and at Y < 0:5 formula (58)

includes sign ‘‘+’’, while at Y > 0:5 it has sign ‘‘)’’.
Therefore at Y ¼ 0:5, the temperature distribution for

Y < 0:5 has a nonzero negative space temperature de-

rivative oT=oY < 0, and the distribution for Y > 0:5 has

a nonzero positive derivative oT=oY > 0.

In Fig. 6, ‘‘Hyperbolic’’ curve has a sharp front at

Y ¼ 0, and everywhere the temperatures are higher than

the boundary temperature and initial temperature.

These data confirm the findings of previous works

[7,9,10], and show that, according to Cattaneo equation,

heat may be transferred directly from the cold to the hot

body. Such a feature of hyperbolic governing equation

makes this equation nonconsistent with classical ther-

modynamics.
Fig. 5. Transient temperature distributions determined from

the derived governing equation (‘‘Parabolic wave’’), Fourier

equation and hyperbolic Cattaneo equation for a ¼ 0:3,

a ¼ 0:37.
6. Conclusions

A method of deriving thermodynamically consistent

equations for heat conduction with finite speed of heat

propagation is developed. It is based on direct applica-

tion of the First and Second laws equations to an ap-

propriate thermodynamic model.

Two thermodynamic models of heat conduction are

introduced and studied. One of them––thermal contact

model––is characterized by infinite speed of heat prop-

agation. Another model based on the thermal mediator

concept describes heat conduction with finite speed of

heat propagation.

For a one-dimensional flow of heat with finite speed

of heat propagation, the governing equation is linear

and of parabolic type. In a three dimensional case of an

isotropic continuum, conduction of heat with finite

speed of heat propagation is described by a nonlinear

system of equations.
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